二、飞车、倒塌及烧毁实例分析
第1 节“三桨叶同时不能顺桨引发的飞车事故”中, 事例二不仅事发时的主控数据完善,而且还找到了事发的直接证据;事例一和事例三因主控数据丢失,机组烧毁、倒塌,只能通过同类机组的长期维修经验及与观察事发时的特殊现象,判断事故发生原因。事故时与事例二存在相同的情况——三支叶片同时不能顺桨。
综合考虑机组运行原理和各种现象,三起事故的共同特点如下:首先,事故机组的电池顺桨控制回路,或旁路限位开关回路存在被强行供电的安全隐患,在机组执行高级别刹车程序时,不能切换到正常的电池顺桨回路。其次,事发时,机组出现“变桨通讯故障”,主控与轮毂变桨因此失去联系,不能通过主控指令使叶片回到90°位置。再次,机组超速时,均未能执行“变桨自主运行”程序,又再次失去顺桨的机会。因此,机组在风速较大时顺利地闯过了所有保护设置,造成三支桨叶同时不能顺桨,最终造成事故发生。
第1 节“三桨叶同时不能顺桨引发的飞车事故”中,三个事例发生的简略过程分别如下:
事例一中的机组报“变桨通讯故障”后,刹车程序BP180,由机舱、主控控制的交直流供电顺桨方式均不能执行,其后,机组再报“变桨速度太慢”,刹车程序BP190,主轴刹车器参与制动,并在30s 之后刹车器自动松开。
该机组使用的是被动式刹车器,制动力为两倍满负荷扭矩,因此,在机组冒烟的同时完全停下来了,此时三支桨叶都在0°位置,当主轴刹车器再次松开,机组迅速启机。由于当时的风速较大,带着巨大的加速度的叶轮转速迅速上升,达到2400rpm硬件超速设定值,主轴刹车器再次制动,此时制动时产生的热量使机组燃烧,产生的巨大翻转扭矩使机组倒塌。
事例二中,机组在45min 43s,报“变桨通讯故障”,刹车程序BP180 脱网,不能顺桨;45min 46s,三支桨叶同时报“变桨速度慢”,刹车程序BP190,主轴刹车器制动。当时风速较大(15.2m/s),加之该机组使用的是主动式刹车器,其制动力仅为事例二倍满负荷扭矩,主轴刹车器已不能使机组停下来。
制动力矩使刹车器、刹车盘、刹车器罩壳大面积脱落并砸在通讯滑环上,在主轴刹车器制动期间机组转速还在不断上升,18s 后,即:46min 02s,机组转速升至硬件超速设定值,BP200,最高转速超过2900rpm,机组振动加剧,最终导致通讯滑环完全断裂,电池顺桨到92°限位开关位置。由于飞车的时间及主轴刹车器制动的时间不长,未出现长时间持续高温,避免了机组燃烧。在BP190 主轴刹车器制动18s(小于30s)后就升至BP200,没有出现主轴刹车器松开后又再次制动产生的巨大冲击扭矩,因此,机组并未倒塌。
在事发前,存在旁路限位开关回路被强行提供24V直流的安全隐患;事发时出现“变桨通讯故障”以及未执行“变桨自主运行”程序;事发过程中出现“通讯滑环完全断裂” ,因轮毂400V交流供电断开,执行轮毂驱动器的电池顺桨,或因旁路限位开关回路的强行供电断开,执行正常的直流(紧急)顺桨,叶片顺桨到92°限位开关位置。具体按哪种情况执行,则与线路断开的时间先后有关,如瞬间同时断裂,则应按正常的电池顺桨方式执行。由此可见,对于以上飞车事发时的应急处理方式有:断UPS使机组切换到正常的直流顺桨;断箱变启动轮毂驱动器的电池顺桨。
当出现“变桨通讯故障” 或未执行“变桨自主运行”停机程序,主控均不会报“变桨自主运行”故障。而事故机组因未执行“变桨自主运行”,从而造成了飞车事故的发生。
事例三的机组报“变桨通讯故障”停机脱网,但不能顺桨,再报“变桨速度太慢”主轴刹车器制动,30s 后松开并一直处于打开状态,其后,在长达10 多分钟的时间内,机组处于超速、空转的状态,而转速一直低于2400rpm。当风速增大,转速超过2400rpm,主轴刹车器制动,最高转速也仅升至2406rpm,然而,因机组已长时间超速、摇晃,制动瞬间又产生了巨大的翻转扭矩从而促成机组倒塌。由于主轴刹车器制动的时间很短,仅有冒烟和火花,机组并未烧毁。
预防措施
在机组运维时,应重点检查机组的安全隐患和排除安全性故障。杜绝为追求发电量而不顾机组安全情况的发生。
一、紧急顺桨控制回路故障的产生及处理
从现场的故障处理经验来看,紧急顺桨控制回路故障可能源自:风电机组控制柜、轮毂的生产接线错误;机组运行过程中产生的故障;维修人员不适当的故障处理方式,或维护人员在维护时的错误改线造成机组在紧急顺桨时,叶片不能按正常的电池顺桨回路进行顺桨。
定期在风电场或者通过远程对机组安全系统进行检查,检查机组是否能顺利通过自检,当机组自检报“叶片不能回到限位开关(1159)”故障时,应重点予以排除。
二、主控、变桨控制程序的改进措施
对主控的刹车程序BP190 进行改进。按照该控制器的原设置,执行紧急顺桨的同时辅助以主轴刹车器制动,无论叶片是否回到限位开关位置,执行该刹车程序30s 后,主轴刹车器会无条件地松开。由此,若叶片能顺利回到限位开关位置,及时松开主轴刹车器,有利于保护齿轮箱和机组安全,但是,如果叶片没有回到限位开关位置,则可能危及机组安全。
正如本文的第1 节“三桨叶同时不能顺桨引发的飞车事故”中的的事例一那样,如果把主控程序修改为:只有当叶片到达92°限位开关位置,主轴刹车器才会松开;如叶片没有到达92°限位开关位置,主轴刹车器则不松开,这样事例一中的事故机组就不会出现再次“迅速启机”,机组烧毁、倒塌事故便不会发生。
三例事故的共同点是:在紧急顺桨控制回路和变桨通讯同时出现故障后,因轮毂控制器的“变桨自主运行”顺桨程序执行条件过于苛刻,不能满足。因此,该顺桨停机程序不能执行,从而造成了机组飞车、倒塌和烧毁事故的发生。
因此,需修改、完善轮毂控制器的“变桨自主运行”停机程序。尤其是当出现“变桨通讯故障”后,机组又出现超速时,应确保“变桨自主运行”停机程序的顺利执行。即:把“变桨自主运行”停机程序的“进桨”“顺桨”限制条件进行完善或去除。为确保出现紧急顺桨控制回路和变桨通讯同时故障时的机组安全,可增加轮毂控制器对“变桨通讯”故障的判断。当轮毂控制器判断有变桨通讯故障时,轮毂则执行“变桨自主运行”停机程序,这样,当机组正常时,执行正常的紧急顺桨停机,如紧急顺桨控制回路和变桨通讯同时故障时,能通过执行“变桨自主运行”停机程序使机组顺桨,冗余保证机组安全运行。
结语
为减少机组故障,避免重大事故的再次发生,应充分理解、消化和吸收国内外先进的风电技术,结合国内风电机组生产、运行的状况,建立良好的风电场管理体制,提高现场人员的技术水平及机组维护和维修质量,定期重点检查事故多发的关键部位,让消除安全隐患落到实处。