下面我们对叶片性能进行分析,现有叶片是按空气动力学原理设计的,如同飞机的机翼,在微风状态下,空气动力性能肯定是很弱的,就像飞机速度低没有升力一 样,这样必然造成微风发电性能差。在高风速状态下,叶片的空气动力性能不断增强,叶片性能不但不能起到稳速稳频的作用,反而成了风电机不稳定和强破坏性的 发源地,我们通过简单的量化计算就可知道它的危害程度。我们以1.5MW风电机为例进行说明,设计风速为13m/s,产生的能量为1.5MW,可转换为 152958kgf·m/s,其能量核算在叶片上的风载可达百吨。若12级台风的平均风速为34m/s,而风的能量与风速的关系是三次方的关系,那么在台 风状态下叶片产生的风载将达千吨以上,这个数值是相当惊人的。我们知道风电机的控制系统有卸载功能,但任何控制系统都存在滞后性,不可能对叶片及时完全卸 载,这样大的风载形成的冲击力是任何机械装置都无法承受的,我们设计制造的变速装置很大,强度也非常高,但仍不能避免这种冲击力对变速装置的损坏。为了避 免变速装置的损坏,风电机又向直驱方向发展,直驱方式省掉了变速装置,但造成发电机转子转速降低,我们知道发电机的发电量是由线圈切割磁力线的速度决定 的,发电机转子转速的降低也就意味着发电效率的降低,人们又一次以牺牲发电效率为代价来解决叶片设计不合理所造成的后果。这种治标不治本的方式肯定是达不 到效果的,这样做只是改变了故障发生的部位,并不能避免强风载带来的破坏。强风载也是造成沿海风电机不稳定、安全性无法保障的最根本原因。也是造成沿海风 电机被台风损毁的主要原因。叶片强风载还会造成风电机强烈振动,这对风电机的破坏也是很强的,往往造成疲劳损坏和高故障率。
控制系统的滞后性也是造成不稳定和破坏性的主要因素,现有风电机的控制装置主要有偏航装置和变浆矩装置,我们知道自然界的风向和风速都是随时随机变化的, 我们的调节装置虽然可以根据风向和风速调整,但在速度上始终是滞后的,并不能完全满足风电机平稳发电的需要。比如在自然界中风向呈90°变化是经常发生 的,偏航装置和变浆矩装置的响应速度若是1°/秒,90°就需要90秒的调整时间,在这么长的调整过程中,风轮叶片所受的风力角是完全不同的,也就是叶片 所受的风力是变化的,必然造成风轮转速的不稳定,从而影响到风电机输出功率的稳定,严重时就会造成风电机解网,造成电网的不稳定。这种调节的滞后性在强风 暴的气候条件下,往往会造成严重的后果,在高风速情况下叶片处于顺浆位置,若风向发生90°变化,就会使叶片完全处于大面积受风的状态,使叶片受力突然增 大,叶片受到的强大风载就会通过传动轴对变速装置造成巨大的冲击,巨大的风载也会对偏航装置造成冲击,造成变速装置和偏航装置的损坏,叶片也有可能被折损 坏。所以控制系统的滞后性将影响控制效果,风电机庞大,控制过程就成了问题发生过程。
从理论上讲进口风电机组的运行风速达50-60m/s,12级飓风的风速平均是34m/s,也就是说风电机组可以在任何狂风暴雨中运行,强度还有富余。但 事实却是残酷的,2003年13号台风“杜鹃”,2006年1号台风“珍珠”和8号台风“桑美”分别造成了广东汕尾红海湾风电场,南澳风电场和浙江苍南鹤 顶山风电场的风机严重损毁,这说明风电机控制系统还有很大缺陷。国外有几十年生产经验,很有实力的公司,都在风电机产品上出现过这样那样的问题。世界最大 的风力发电机组制造商NEG Micon就是因为齿轮箱问题,他为所生产的风力发电机组都换了一次齿轮箱,这家世界最大的风力发电机制造商破产了,这在其它产业是不可能发生的。目前我 国风电整机制造企业已近80多家,质量问题频发,国产风电机故障率更高也就不足为奇。这些都充分说明现有叶片的高风载特性和控制系统滞后性给风电产业带来 的危害性。
我们利用数据进一步说明改进叶片性能的必要性,我们对运行数据进行分析,当风速小于6m/s时,风能利用系数小,空气动力性能弱,当风速在8m/s左右时,风能利用系数变大,说明叶片的空气动力性能已发挥作用,当风速大于10m/s以上时,风能利用系数不断减小,也就是叶片的变桨距装置开始动作,随着风速的增高,变桨距在不断减小叶片的空气动力性能。根据以上分析就可以得出这样的结论:在低风速时,叶片的空气动力性能作用不大,在高风速时,我们又限制空 气动力性能的作用,从运行数据还可以看出,当风速大于10m/s时变桨距装置就开始减小叶片的空气动力性能,一般风电机的设计风速是13m/s, 也就是说 叶片是通过变桨距装置限制过载,但是我们知道控制系统始终是滞后的,并不能及时限制过载,这样就造成在高风速状态下过载随时都可能发生,造成风电机不稳定,造成并网稳定性差。也就是说我们精心设计的具有优良空气动力性能的叶片,实际上并没有发挥太大的作用,而且叶片的高风载特性和控制系统滞后性造成风电 机不稳定,因此,现有叶片的性能是弊大于利。从运行数据还可以看出,在陆地风速较低(3-8m/s)的情况下,风能利用系数小,风电机的发电效率很低,而 这个风速是时间最长,最有开发价值的风速,也就是说我们花高额成本设计制造的风电机叶片,在大部份时间并没有发挥应有的效能,而且造成微风发电性能差。