1980 年代,VG 开始应用于风电机组叶片中,用以控制流动分离,大量应用证明VG 能显著提升风电机组发电效率。当前大型变速变桨控制风电机组叶片的翼型设计工作点均处于较大升力系数处,即翼型工作于接近失速的攻角下。当风电机组转速达到额定转速而功率未达到满发状态时,随着风速的增加,叶尖速比减小,叶片截面的攻角增加。而由于风轮面内的旋转线速度远低于叶尖,叶根区域的攻角大于叶尖,将先于叶尖区域失速。因此VG 常应用于叶根区域(展向长度30% 以内)。图4 为VG 应用于叶片上的原理简图。

四、扰流器
根据动量叶素理论,最优的叶片外形设计要求叶根部有很大的弦长以捕获风能。然而在工程实际中,受结构方面的制约,大部分叶片的最大弦长均被大大削减。因此,叶根扰流器逐渐被广泛用于叶片上以弥补叶根部的风能捕获。
在航空领域,飞机机翼的吸力面安装扰流器,当其打开工作时,升力减小,阻力增加,常用于飞机降落过程中。叶片则刚好相反,扰流器被安装于叶根部压力面后缘,起到增加翼型中弧线的效果,增加了升力系数。图5 展示了LM 和西门子公司叶片上常见的几种扰流器。

五、翼刀
在航空领域中,后掠翼飞机机翼通过翼刀阻断边界层向翼尖的流动,确保飞行的安全。在风电机组叶片中,叶根区域流体雷诺数远低于叶尖区域,流动受粘性力影响大,边界层内气体受叶片旋转产生的离心力有流向叶尖的趋势,从而造成气流分离向叶尖扩大,导致气动效率降低。于是在叶片中也引入了翼刀的设计,在物理上阻断边界层向叶尖的流动,增加气动效率。Van Dam 等人运用CFD 方法分析了翼刀对叶片气动性能的影响。图6 是LM 公司的一种带有翼刀的叶片。